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Abstract. Total electronic correlation corrections to the binding energies of the isoelectronic series of
beryllium, neon, magnesium and argon, are calculated in the framework of relativistic multiconfiguration
Dirac-Fock method. Convergence of the correlation energies is studied as the active set of orbitals is in-
creased. The Breit interaction is treated fully self-consistently. The final results can be used in the accurately
determination of atomic masses from highly charged ions data obtained in Penning-trap experiments.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 31.25.Eb
Electron correlation calculations for atoms and ions: ground state

1 Introduction

The determination of an accurate value for the fine struc-
ture constant α and of accurate mass values has received
lately special attention due to recent works on highly ion-
ized atoms using Penning traps [1–3]. The relative uncer-
tainties of such experimental results can vary from 10−7

to 10−10, depending on the handled ionic species, on the
lifetime of the nucleus and on the experimental apparatus.

When calculating the atomic mass from the experi-
mentally observed ion mass with this technique, one has
to account for the mass qme of the q removed electrons
and their atomic binding energy EB. Therefore, the mass
of atom X is given by

mX = mXq+ + qme − EB

c2
. (1)

The influence of the binding energy uncertainties on the
mass determination depends on the specific atom, and in-
creases with the Z value. For example, in the Cs mass
determination, an uncertainty of about 10 eV in the cal-
culated K-, Ar-, and Cl-like Cs ions binding energies [4]

a e-mail: jps@cii.fc.ul.pt
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originates an uncertainty of the order of 10−11 in the mass
determination [1].

This means that for the largest uncertainties a simple
relativistic calculated value, in the framework of the Dirac-
Fock (DF) approach, is more than sufficient. However,
if the experimental apparatus provides values with an
accuracy that approaches the lower side of the men-
tioned interval, one has to perform more sophisticated
theoretical calculations, such as the ones that use the
Multi-Configuration Dirac-Fock (MCDF) model which in-
cludes electronic correlation, in order to achieve a compa-
rable accuracy in the binding energy determination.

In this article we provide accurate correlation contribu-
tion to the binding energy for the Be-like, Ne-like, Mg-like
and Ar-like systems for atomic numbers up to Z = 95. We
also study self-energy screening effects. The correlation en-
ergies provided here are designed to correct the Dirac-Fock
results of reference [5] for relativistic correlation effects. In
that work, Dirac-Fock energies for all iso-electronic series
with 3 to 105 electrons, and all atomic numbers between 3
and 118 are provided, using the same electron-electron in-
teraction operator described in Section 2. In Section 2 we
give the principle of the calculations, namely a brief de-
scription of the MCDF method used in these calculations
and the enumeration of the radiative corrections included.
In Section 3 we present the results of calculations and the
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conclusions are given in Section 4. All numerical results
presented here are evaluated with values of the fundamen-
tal constants from the 1998 adjustment [6].

2 Calculations

To perform theoretical relativistic calculations in atomic
systems with more than one electron, the Brown and
Ravenhal problem [7], related to the existence of the
E < −mc2 continuum, must be taken in account. To over-
come this situation, Sucher [8] suggested that a proper
form of the electron-electron interaction with projection
operators onto the E > mc2 continuum must be used,
leading to the so called no-pair Hamiltonian,

Hno pair =
N∑

i=1

HD(ri) +
∑

i<j

V(|ri − rj|), (2)

where HD is the one electron Dirac operator and Vij =
Λ++

ij VijΛ
++
ij is an operator representing the electron-

electron interaction of order α [9,10]. Here Λ++
ij = Λ+

i Λ+
j

is an operator projecting onto the positive energy Dirac
eigenstates to avoid introducing unwanted pair creation
effects. There is no explicit expression for Λ++, except at
the Pauli approximation [11]. The elimination of the spu-
rious contributions from the E < −mc2 continuum in the
MCDF method [9] is achieved by solving the MCDF radial
differential equations on a finite basis set and keeping in
the basis set expansion only the solutions whose eigenval-
ues are greater than −mc2 in order to remove the negative
continuum. The basis set used is made of B-Splines. The
method of reference [9] suffers however from limitations
and inaccuracies due to limitations of the B-Spine basis.
When the number of occupied orbitals is increased, these
numerical errors prevent convergence. In that case we had
to calculate without projecting. However this problem is
not very severe, as the role of the negative energy contin-
uum becomes less and less important when the number
of electrons increases. In the 4 isoelectronic series studied
here, only the Be-like sequence was sensitive to the pres-
ence of the projection operator even at relatively low Z. In
the other series, only the case with Z = 95 involving the
6h shell would have required it. In the latter case conver-
gence was impossible whether a projection operator was
used or not.

The electron-electron interaction operator Vij is gauge
dependent, and is represented in the Coulomb gauge and
in atomic units, by:

Vij =
1
rij

(3a)

−αi · αj

rij
(3b)

−αi · αj

rij
[cos

(ωijrij

c

)
− 1]

+c2(αi · ∇i)(αj · ∇j)
cos

(ωijrij

c

) − 1
ω2

ijrij
, (3c)

where rij = |ri − rj | is the inter-electronic distance, ωij is
the energy of the exchanged photon between the two elec-
trons, αi are the Dirac matrices and c = 1/α is the
speed of light. The term (3a) represents the Coulomb in-
teraction, the second one (3b) is the Gaunt (magnetic)
interaction, and the last two terms (3c) stand for the re-
tardation operator [12,13]. In the above expression the
∇ operators act only on rij and not on the following wave
functions. By a series expansion in powers of ωijrij/c � 1
of the operators in expressions (3b) and (3c) one obtains
the Breit interaction, which includes the leading retar-
dation contribution of order α2. The Breit interaction is
the sum of the Gaunt interaction (3b) and of the Breit
retardation

BR
ij =

αi · αj

2rij
− (αi · rij) (αj · rij)

2r3
ij

. (4)

In the present calculation the electron-electron interaction
is described by the sum of the Coulomb and the Breit in-
teraction. The remaining contributions due to the differ-
ence between equations (3c) and (4) were treated only as
a first order perturbation.

2.1 Dirac-Fock method

A first approach in relativistic atomic calculations is ob-
tained through the relativistic counterpart of the non-
relativistic Hartree-Fock (HF) method, the Dirac-Fock
method. The principles underlying this method are vir-
tually the same as those of the non-relativistic one. In the
DF method the electrons are treated in the independent-
particle approximation, and their wave functions are
evaluated in the Coulomb field of the nucleus and the
spherically-averaged field from the electrons. A natural
improvement of the method is the generalization of the
electronic field to include other contributions, such as the
Breit interaction.

The major limitation of this method lies in the fact
that it makes use of the spherically-averaged field of the
electrons and not of the local field; i.e., it does not take
into account electronic correlation.

2.2 Multiconfiguration Dirac-Fock method

To account for electron correlation not present at the
DF level, one may add, to the initial DF configura-
tion, configurations with the same parity and total an-
gular momentum, involving unoccupied (virtual) orbitals
This is the principle of the Multiconfiguration Dirac-Fock
method.

The total energy of an atom, or ion, is the eigenvalue
of the following equation:

Hno pairΨΠ,J,M (. . . , ri, . . .) = EΠ,J,MΨΠ,J,M (. . . , ri, . . .),
(5)

where Π is the parity, J2 is the total angular momentum
with eigenvalue J and its projection on the z-axis Jz, with
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eigenvalue M . The MCDF method is defined by the partic-
ular choice of the total wave function ΨΠ,J,M (..., ri, ...) as a
linear combination of configuration state functions (CSF):

| ΨΠ,J,M 〉 =
∑

ν

cν | νΠJM〉. (6)

The CSF are chosen as eigenfunctions of Π , J2, and Jz.
The label ν stands for all other numbers (principal quan-
tum number, coupling, ...) necessary to define unambigu-
ously the CSF. For a N -electron system, the CSF is a
linear combination of Slater determinants

| νΠJM〉 =
∑

i

di

∣∣∣∣∣∣∣

Φi
1(r1) · · · Φi

N (r1)
...

. . .
...

Φi
1(rN ) · · · Φi

N (rN )

∣∣∣∣∣∣∣
, (7)

where the Φ’s are the one-electron wave functions. In
the relativistic case, they are the Dirac four-component
spinors:

Φnκµ(r) =
1
r

[
Pnκ(r)χκµ(θ, φ)

iQnκ(r)χ−κµ(θ, φ)

]
(8)

where χκµ(θ, φ) is a two component Pauli spherical
spinors [14] and Pnκ(r) and Qnκ(r) are the large and the
small radial components of the wave function, respectively.
The functions Pnκ(r), Qnκ(r) are the solutions of cou-
pled integro-differential equations obtained by minimizing
equation (5) with respect to each radial wave function.
The coefficients di are determined numerically by requir-
ing that each CSF is an eigenstate of J2 and Jz, while
the coefficients cν are determined by diagonalization of
the Hamiltonian matrix (for more details see, e.g., refer-
ences [14–16]).

The numerical methods, as described in refer-
ences [9,16], enabled the full relaxation of all orbitals in-
cluded and the complete self-consistent treatment of the
Breit interaction, i.e., in both the Hamiltonian matrix
used for the determination of the mixing coefficients cν

in equation (6) and of the differential equations used to
obtain the radial wave functions. To our knowledge, this is
a unique feature of the MCDF code we used, since others
only include the Breit contribution in the determination
of the mixing coefficients (see, e.g., [17]).

2.3 Radiative corrections

The present work is intended to provide correlation en-
ergies to complement the results listed in reference [5].
Radiative corrections are already included in reference [5].
However, we give here a discussion of the self-energy
screening correction, in view of a recent work [18], to
compare the uncertainty due to approximate evalua-
tion of multi-electron QED corrections and those due to
correlation.

The radiative corrections due to the electron-nucleus
interaction, namely the self-energy and the vacuum
polarization, which are not included in the Hamiltonian

discussed in the previous sections, can be obtained using
various approximations. Our evaluation, mostly identical
to the one in reference [5] is described as follows.

One-electron self-energy is evaluated using the one-
electron results by Mohr and coworkers [19–21] for sev-
eral (n, �), and corrected for finite nuclear size [22].
Self-energy screening and vacuum polarization are treated
with the approximate method developed by Indelicato
and coworkers [23–26]. These methods yield results in
close agreement with more sophisticated methods based
on QED [27–29]. More recently a QED calculation of the
self-energy screening correction between electrons of quan-
tum numbers n ≤ 2, � = 0, 1, has been published [18],
which allows to evaluate the self-energy screening in the
ground state of 2- to 10-electron ions. In the present work
we use these results to evaluate the self-energy screening
in Be-like and Ne-like ions.

3 Results and discussion

3.1 Correlation

To obtain the uncorrelated energy we start from a
Dirac-Fock calculation, with Breit interaction included
self-consistently. This correspond to the case in which the
expansion (6) has only one term in the present work since
we study ions with only closed shells.

The active variational space size is increased by en-
abling all single and double excitations from all occu-
pied shells to all virtual orbitals up to a maximum n
and � = n− 1 including the effect of the electron-electron
interaction to all-orders (see [4] for further details). For
example, in the Be-like ion case both the 1s and 2s occu-
pied orbitals are excited up to 2p, then up to 3d, 4f , 5g,
and 6h. We can then compare the difference between suc-
cessive correlation energies obtained in this way, to assess
the convergence of the calculation. When calculating cor-
relation corrections to the binding energy it is obviously
important to excite the inner shells, as the correlation con-
tribution to the most bound electrons provides the largest
contribution to the total correlation energy. However this
leads to very large number of configuration when the num-
ber of occupied orbitals is large.

In the present calculations we used a virtual space
spanned by all singly and doubly-excited configurations.
For the single excitations we excluded the configurations
in which the electron was excited to an orbital of the
same κ as the initial orbital (Brillouin orbitals). In the
present case, where there is only one jj configuration
in the reference state, those excitations do not change
the total energy, according to the Brillouin theorem (see,
e.g., [30–32]). That would not be true in cases with open
shells in the reference state as it was recently demon-
strated [33]. The choice of single and double substitutions
is due to computation reasons and is justified by the over-
whelming weight of these contributions.

For all iso-electronic sequences considered here, we in-
cluded all configurations with active orbitals up to 6h,
except sometimes for the neutral case or for Z = 95,
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Table 1. Number of jj configurations within a given vir-
tual space identified by the correlation orbital with the high-
est (n, �) quantum numbers.

2p 3d 4f 5g 6h

Be-like 8 38 104 218 392

Ne-like 84 386 1007 2039

Mg-like 84 486 1359 2838

Ar-like 56 712 2422 5505

for which convergence problems were encountered. The
generation of the multiconfiguration expansions was auto-
matically within the mdfgme code. The latest version can
generate all single and double excitations from all the oc-
cupied levels in a given configuration to a given maximum
value of the principal and angular quantum numbers. The
number of configurations used to excite all possible pairs
of electrons to the higher virtual orbitals considered is
shown in Table 1. This table shows the rapid increase of
the number of configurations with the number of electrons.

In Table 2 we provide a detailed study of the con-
tributions to the correlation energy of Be-like ions for Z
in the range 4 ≤ Z ≤ 95. We compare several cases. In
the first case, the Coulomb correlation energy is evalu-
ated using only the operator given by equation (3a). In
the second case, the wavefunctions are evaluated with the
same operator in the SCF process, and used to calculate
the mean-value of the Breit operator (4). Finally, we in-
clude the Breit operator both in the differential equation
used to evaluate the wavefunction (Breit SC) and in the
Hamiltonian matrix. For high-Z, relativistic corrections
dominate the correlation energy, which no longer behaves
as A + B/Z + ..., as is expected in a non-relativistic ap-
proximation. The contribution from the Breit operator
represents 34% of the Coulomb contribution. It is thus
clear that any calculation claiming sub-eV accuracy must
include the effect of Breit correlation. Obviously higher-
order QED effects, not obtainable by an Hamiltonian-
based formalism, can have a similar order of magnitude.

In Tables 3 to 5 we list the correlation energy
for the Ne-, Mg- and Ar-like sequence with fully self-
consistent Breit interaction, for different sizes of the active
space. Double excitations from all occupied orbitals to all
possible shells up to 3d, 4f , 5g and 6h are included, except
when it was not possible to reach convergence.

In Figures 1 to 4 we present the evolution of the corre-
lation energy Ec (in eV), defined by the difference between
the total binding energy obtained with the MCDF method
and the one obtained by the DF method, with the increase
of the virtual space for each isoelectronic series studied.
We notice, as expected, a decrease of the energy with the
increase of the atomic number and the increase of the
number of virtual orbitals.

An inspection of Figures 1 to 4 and of Tables 3 to 5
gives a clear indication of the importance of including a
specific shell in the calculation for the value of the corre-
lation, i.e., if a new curve, corresponding to the inclusion
of a specific shell, is close to the previous curve, obtained
through the inclusion of shells of lower principal quan-

Table 2. Details of the results for the correlation energy of
Be-like ions as a function of the operator used in the evaluation
of the wavefunction and of the size of the active space (see
explanations in the text). “all → n�”: double excitations from
all occupied orbitals to all shells up to n� are included.

coulomb correlation, Coulomb SC

Z 2s2 + 2p2 all → 2p all → 3d all → 4f all → 5g

4 –1.192 –1.192 –2.172 –2.306 –2.392

10 –3.323 –3.328 –4.364 –4.586 –4.688

15 –4.867 –4.876 –5.939 –6.171 –6.274

18 –5.710 –5.720 –6.796 –7.031 –7.136

25 –7.340 –7.353 –8.457 –8.700 –8.807

35 –8.755 –8.774 –9.921 –10.176 –10.286

45 –9.399 –9.427 –10.618 –10.887 –11.000

55 –9.741 –9.778 –11.016 –11.299 –11.417

65 –10.013 –10.057 –11.351 –11.649 –11.775

75 –10.273 –10.321 –11.689 –12.007 –12.142

85 –10.556 –10.607 –12.078 –12.421 –12.568

95 –11.042 –11.094 –12.717 –13.095 –13.257

Total correlation, Coulomb SC

Z 2s2 + 2p2 all → 2p all → 3d all → 4f all → 5g

4 –1.192 –1.192 –2.176 –2.310 –2.396

10 –3.325 –3.330 –4.390 –4.617 –4.722

15 –4.873 –4.882 –6.003 –6.246 –6.357

18 –5.720 –5.731 –6.890 –7.142 –7.257

25 –7.367 –7.382 –8.648 –8.923 –9.048

35 –8.813 –8.835 –10.298 –10.612 –10.753

45 –9.480 –9.513 –11.217 –11.575 –11.734

55 –9.829 –9.874 –11.863 –12.269 –12.445

65 –10.103 –10.159 –12.483 –12.933 –13.147

75 –10.381 –10.446 –13.172 –13.678 –13.926

85 –10.720 –10.794 –14.011 –14.585 –14.878

95 –11.308 –11.392 –15.236 –15.897 –16.245

Total correlation, Breit SC

Z 2s2 + 2p2 all → 2p all → 3d all → 4f all → 5g all → 6h

4 –1.192 –1.192 –2.176 –2.310 –2.396

10 –3.325 –3.330 –4.406 –4.616 –4.723 –4.759

15 –4.873 –4.882 –6.004 –6.245 –6.360 –6.380

18 –5.721 –5.732 –6.887 –7.136 –7.254 –7.303

25 –7.367 –7.382 –8.658 –8.936 –9.066 –9.122

35 –8.814 –8.836 –10.334 –10.659 –10.811 –10.879

45 –9.483 –9.517 –11.308 –11.692 –11.870 –11.951

55 –9.836 –9.884 –12.048 –12.502 –12.710 –12.805

65 –10.116 –10.179 –12.813 –13.353 –13.594 –13.707

75 –10.402 –10.481 –13.712 –14.355 –14.638 –14.771

85 –10.750 –10.847 –14.843 –15.618 –15.951 –16.109

95 –11.349 –11.473 –16.467 –17.415 –17.812

tum number, it means that we have included the major
part of the correlation in the energy calculation. We can
also see the effect of including or not the Breit interaction
in the SCF process. Our calculation is accurate within a
few 0.01 eV for low-Z Be-like ions up to 0.15 eV at high-Z.
For Ne-like ions, we find respectively 0.4 eV and 1 eV, for
Mg-like ions we find 0.9 and 1.4 eV, and for Ar-like ions
these numbers are 2.3 and 3 eV. It is thus clear that the
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Table 3. Calculated total correlation energy for the Ne se-
quence, for different sets of SCF. “all → n�”: double excitations
from all occupied orbitals to all shells up to n� are included.
Results with Breit self consistent included in the calculation.

Z all → 3d all → 4f all → 5g all → 6h

10 –5.911 –8.306 –9.339 –9.709

15 –5.989 –8.712 –9.838 –10.280

25 –6.374 –9.310 –10.494 –10.967

35 –6.710 –9.850 –11.099 –11.609

45 –7.074 –10.482 –11.816 –12.372

55 –7.515 –11.269 –12.710 –13.322

65 –8.067 –12.260 –13.833 –14.511

75 –8.752 –13.375 –15.247 –16.007

85 –9.772 –15.119 –17.056 –17.916

95 –11.160 –17.231 –19.429 –20.415

105 –13.061 –20.129 –22.689

Table 4. Details of the results for the correlation energy of
Mg-like ions as a function of the operator used in the evaluation
of the wavefunction and of the size of the active space (see
explanations in the text). “all → n�”: double excitations from
all occupied orbitals to all shells up to n� are included.

Coulomb correlation, Coulomb SC

Z all → 3d all → 4f all → 5g all → 6h

12 –3.372 –7.823 –9.741

20 –5.211 –9.724 –11.809 –12.640

25 –5.878 –10.470 –12.582 –13.442

35 –6.852 –11.588 –13.768 –14.638

45 –7.477 –12.349 –14.597 –15.477

55 –7.845 –12.810 –15.185 –16.071

65 –8.063 –13.179 –15.642 –16.541

75 –8.220 –13.596 –16.081 –17.001

85 –8.378 –14.006 –16.598 –17.550

95 –8.597 –14.560 –17.307 –18.305

Total correlation, Coulomb SC

Z all → 3d all → 4f all → 5g all → 6h

12 –3.379 –7.836 –9.786

20 –5.241 –9.792 –11.971 –12.833

25 –5.932 –10.598 –12.855 –13.768

35 –6.977 –11.891 –14.351 –15.338

45 –7.702 –12.902 –15.614 –16.693

55 –8.200 –13.668 –16.753 –17.933

65 –8.580 –14.424 –17.879 –19.172

75 –8.934 –15.374 –19.112 –20.523

85 –9.328 –16.401 –20.572 –22.117

95 –9.833 –17.718 –22.422

Total correlation, Breit SC

Z all → 3d all → 4f all → 5g all → 6h

12 –3.379 –7.864 –9.734

20 –5.241 –9.793 –11.972 –12.830

25 –5.932 –10.599 –12.857 –13.762

35 –6.976 –11.899 –14.356 –15.325

45 –7.701 –12.932 –15.611 –16.676

55 –8.198 –13.808 –16.799 –17.939

65 –8.577 –14.677 –18.009 –19.247

75 –8.928 –15.670 –19.375 –20.772

85 –9.319 –16.939 –21.062

95 –9.826 –18.695 –23.244

Table 5. Details of the results for the correlation energy of
Ar-like ions as a function of the size of the active space (see
explanations in the text). “all → n�”: double excitations from
all occupied orbitals to all shells up to n� are included. Results
with Breit self consistent included in the calculation.

Z all → 3d all → 4f all → 5g all → 6h

18 –3.258 –10.462 –13.886

20 –4.003 –11.700 –15.203 –17.557

25 –5.441 –13.851 –17.755 –19.994

35 –7.689 –16.982 –21.292 –23.578

45 –9.482 –19.441 –24.093 –26.472

55 –10.844 –21.455 –26.486 –28.985

65 –11.746 –23.077 –28.564 –31.213

75 –12.197 –24.380 –30.426 –33.257

85 –12.254 –25.499 –32.229 –35.278

95 –12.002 –26.644 –34.207

Fig. 1. Evolution of the correlation energy Ec (in eV) for
Be-like ions, defined by the difference between the total bind-
ing energy obtained with the MCDF method and the one ob-
tained by the DF method, with the increase of virtual space.
A color version of the figure is available in electronic form at
http://www.eurphysj.org.

Fig. 2. Evolution of the correlation energy Ec (in eV) for
Ne-like ions, defined by the difference between the total bind-
ing energy obtained with the MCDF method and the one ob-
tained by the DF method, with the increase of virtual space.
A color version of the figure is available in electronic form at
http://www.eurphysj.org.
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Fig. 3. Evolution of the correlation energy Ec (in eV) for
Mg-like ions, defined by the difference between the total bind-
ing energy obtained with the MCDF method and the one ob-
tained by the DF method, with the increase of virtual space.
A color version of the figure is available in electronic form at
http://www.eurphysj.org.

Fig. 4. Evolution of the correlation energy Ec (in eV) for
Ar-like ions, defined by the difference between the total bind-
ing energy obtained with the MCDF method and the one ob-
tained by the DF method, with the increase of virtual space.
A color version of the figure is available in electronic form at
http://www.eurphysj.org.

Table 6. Fit to the ground state total correlation energy ∆E of the Be, Ne, Mg and Ar isoelectronic sequences, with correlation
orbitals up to 6h.

Series Fit

Be ∆E = 1.421329 × 10−7Z4 − 7.019909 × 10−5Z3 + 9.159169 × 10−3Z2 − 5.474933 × 10−1Z − 7.191674 × 10−2

Ne ∆E = 5.523943 × 10−8Z4 − 2.760868 × 10−5Z3 + 2.214132 × 10−3Z2 − 1.324244 × 10−1Z − 8.627745

Mg ∆E = −2.156149 × 10−8Z4 − 1.529410 × 10−5Z3 + 2.928077 × 10−3Z2 − 2.903759 × 10−1Z − 8.078404

Ar ∆E = 5.696195 × 10−7Z4 − 1.529548 × 10−4Z3 + 1.589991 × 10−2Z2 − 9.710181 × 10−1Z − 3.406304

Table 7. Contributions to the atomic binding energy for for ions of different Z in the beryllium isoelectronic serie (in eV).

Z = 4 Z = 45 Z = 85

Coulomb –398.91260 –68961.32493 –272463.59996

Magnetic 0.01430 39.84888 310.21457

Retardation (order ω2) 0.00105 –0.58860 –6.10695

Higher-order retardation (> ω2) 0.00000 0.00000 0.00000

Hydrogen-like self-energy 0.01310 62.62419 610.43890

Self-energy screening –0.00291 –1.76962 –13.44919

Vacuum polarization (Uheling) α(Zα) –0.00039 –7.46054 –139.37727

Electronic correction to Uheling 0.00004 0.03290 0.33323

Vacuum polarization α(Zα)3 0.00000 0.12368 6.14067

Vac. Pol. (Källèn & Sabry) α2(Zα) 0.00000 –0.06042 –1.07200

Recoil 0.00000 –0.00805 –0.06221

Correlation –2.39600 –11.95100 –16.10900

Total Energy –401.28341 –68880.53351 –271712.6492

maximum value of n and � one should go to reach uniform
accuracy increases with the number of electrons. However
the uncertainty due to this limitation of our calculation
is probably negligible compared to neglected QED correc-
tions like the contribution from negative energy contin-
uum, box diagram and two-loop QED corrections.

In order to provide values for arbitrary atomic numbers
within each isoelectronic series we have fitted polynomials
to the best correlation curves. The equations for these fits
are given in Table 6.

We present in Table 7 the different terms contributing
to the total atomic binding energy of Be-like ions with
Z = 4, 45 and 85, to illustrate their relative importance.

3.2 Self-energy screening

In Table 8 we compare the self-energy screening correction
evaluated by the use of reference [18] and by the Welton
method. Direct evaluation of the screened self-energy dia-
gram using reference [18], includes relaxation only at the
one-photon exchange level. The Welton method include
relaxation at the Dirac-Fock or MCDF level. In the case
of Be-like ions we also performed a calculation including
intra-shell correlation to have an estimate of the effect of
correlation on the self-energy screening. The change due
to the method is much larger than the effect of even strong
intra-shell correlation. The difference between the two
evaluations of the self-energy screening can reach ≈2 eV
at Z = 95.
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Table 8. Comparison of the screened self-energy contribution in Be-like and Ne-like ions obtained by different methods.

Be-like Ne-like

Ref. [18] Welton model Ref. [18] Welton model

Z 2s2 2s2 + 2p2 2s2 2s2 + 2p2

4 –0.004 –0.004 –0.003 –0.003

10 –0.047 –0.046 –0.036 –0.035 –0.081 –0.050

15 –0.132 –0.129 –0.104 –0.101 –0.229 –0.155

25 –0.466 –0.458 –0.384 –0.375 –0.835 –0.614

35 –1.066 –1.053 –0.917 –0.903 –1.973 –1.519

45 –1.995 –1.976 –1.801 –1.783 –3.825 –3.060

55 –3.349 –3.323 –3.190 –3.165 –6.659 –5.530

65 –5.282 –5.248 –5.317 –5.279 –10.888 –9.388

75 –8.054 –8.012 –8.562 –8.499 –17.178 –15.373

85 –12.130 –12.080 –13.546 –13.439 –26.659 –24.737

95 –19.176 –19.109 –21.347 –21.162 –41.114 –39.721

4 Conclusions

We have presented relativistic calculations of the correla-
tion contribution to the total binding energies for ions
of the beryllium, neon, magnesium and argon isoelec-
tronic series. We have shown that accurate results can be
achieved if excitations to all shells up to the n = 6 shell
are included. We have also compared two different meth-
ods for the evaluation of the self-energy screening. Com-
bined with the results of reference [5] our results will pro-
vide binding energies with enough accuracy for all ion trap
mass measurements to come, involving ions with the iso-
electronic sequences considered here.
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Brossel is Unité Mixte de Recherche du CNRS n◦ C8552.

References

1. C. Carlberg, T. Fritioff, I. Bergström, Phys. Rev. Lett.
83, 4506 (1999)

2. D. Beck, F. Ames, G. Audi, G. Bollen, F. Herfurth,
H.J. Kluge, A. Kohl, M. Konig, D. Lunney, I. Martel,
R.B. Moore, H.R. Hartmann, E. Schark, S. Schwarz,
M.d.S. Simon, J. Szerypo, Eur. Phys. J. A 8, 307 (2000)

3. G. Douysset, T. Fritioff, C. Carlberg, I. Bergström, M.
Bjorkhage, Phys. Rev. Lett. 86, 4259 (2001)

4. G.C. Rodrigues, M.A. Ourdane, J. Bieroń, P. Indelicato,
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